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Small Business Innovation Research (SBIR) Program 
Phase 1 - Summary Report 

Contract No. F33615-88-C-3215 

Topic No.: SDI87-12 

Small Business Firm: SYSTEMS ENGINEERING, INC.1 

Principal Investigator: Dr. William H. Bennett 

Proposal Title: Frequency Domain Design of Robust Controllers for Space 
Structures 

Project Summary: 

The purpose of the Phase 1 effort was to investigate and demonstrate the 
feasibility of a new class of computational algorithms for the design of high 
performance control laws for flexible space structures based on frequency 
response modeling and to consider advanced techniques for the implementa- 
tion of real time control for precision (wide bandwidth) applications. Typical 
applications requiring advanced realtime control of flexible space structure 
include vibration suppression and isolation of payload subsystems. Perfor- 
mance of vibration suppression and isolation systems are critical factors ef- 
fecting achievable levels of performance for space based optical systems. 

In the Phase 1 effort, a prototype software code was developed for testing 
computational algorithms for spectral factorization, causal projection, and 
coprime factorization—critical steps in frequency domain design of precision 
control laws. Several representative models of vibration suppression and iso- 
lation of flexible structures were developed and control laws were designed 
and tested. The innovative approach for frequency domain computations 
employed is based on sampling and interpolation of the system frequency 
response. Results from Phase 1 study clearly demonstrate the efficiency and 

'A Division of Techno-Sciences, Inc. 

1X1 



numerical stability of the computational algorithms for both irrational (dis- 
tributed parameter) transfer function models and various rational (lumped 
parameter) approximate models of structural elasticity. The feasibility of 
innovative realtime control implementations based on state-of-the-art VLSI 
technology and modern digital signal processing was considered in the Phase 
1 effort. Design and testing of such controller implementations will form the 
basis of the Phase 2 proposal. 

Anticipated Benefits/Applications: 

The project has demonstrated a radical and innovative approach to re- 
altime control for flexible space structures which has the potential to han- 
dle large degree-of-freedom motions by a computationally efficient approach. 
The demonstration of realtime control by FIR based digital processing will 
provide a new and effective approach for realtime control implementation ap- 
plicable to a wide variety of space-based payload systems with requirements 
for precision stabilization, pointing, and vibration isolation. Frequency re- 
sponse modeling is potentially important for a wide variety of applications 
where active control of elastic mechanical vibration are the primary per- 
formance criterion effecting system accuracy and precision. Such systems 
include various space based optical and rf sensors systems as well as directed 
energy weapon platforms with precision pointing requirements. 

Key Words: 

flexible structures, digital control, FIR filters, distributed parameter con- 
trol theory 

iv 
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1    Phase 1 Project Objectives and Progress Summary 

Available methods for design of complex, multiloop control systems for flexible structures are 

currently quite limited. Current methods are largely based on state space models obtained by 

modal truncation and controllers are designed by LQG optimization [1]. Achieving precision 
control will depend on the ability to optimally assess design tradeoffs for models which 
capture the essential distributed parameter nature of the dynamic phenomenon involved [2]. 

The Modern Control Theory Paradigm: Computation and Implementation by 
State Space Methods Modern methods in control system design are based on a class of 
mathematical models for the linear (small amplitude) response of systems (called state space 
models) resulting from modeling the system response as a system on first order Ordinary 
Differential Equations (ODE's) in time. Optimization of the system time responses is used to 
resolve certain basic engineering tradeoffs. State space models are particularly significant for 
time response optimization since they provide an internal realization of the system dynamics 
in terms of a system state which codifies the past history of the system response up to the 
current time. The concept of a state space realization has proven advantageous (at least 

for low-order systems) for several reasons including the fact the computational algorithms 
for time response optimization can be described in terms of constant real matrices. Such 
computational algorithms can be readily supported by realiable numerical software running 
on a standard digital computer. 

In the theory the system response is modeled by a state space model; 

x(t) = Ax{t) + Bu(t), 

y(t) = Cx(t), 

where x(t) € J?n is the system state, y(t) £ 5?p is the vectyor of system outputs, and 

u(t) G Km is the vector of system inputs. Control system design methods are based on 
the separation of state variable feedback and asymptotic state estimator (observer) designs. 
The resulting control compensator suggested by this process of separate design steps can be 

realized as shown in Figure 1.1. Here the triangular blocks designate an integration operation 
for continuous time system realizations as described above. The picture (drawn in this way) 
is suggestive of the principal technology for simulation of dynamical systems—popular in 
the 1950-1970's—associated with analog or hybrid computers. 

As the performance of digital computers increased while their size and power require- 
ments decreased a range of applications for realtime control using digital computers became 
possible. The modern control paradigm was then extended by considering the state space 
realization for the equivalent sampled-data system of the form 

x((k + 1)T) s Ax{kT) + Bu{kT), 

y(kT) = Cx(kT), 

where T is the (uniform) sampling interval. In this case the implemenation/realization 
paradigm carries over directly by considering the triangular blocks in Fig. 1.1 to be a unit 
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plant model 

compensator realization 

Figure 1.1: The realization/implementation paradigm of modern control theory. 

delay of time T. However, it is apparent that such a component based approach to imple- 
mentation offers a constrained view of options for realtime control implemenation in a digital 

computer. 
It is the basic proposition of this project (and the phase 2 proposal will focus on this 

issue) that the above component based approach to control law implementation by state 
space realization is essentially obsolete given the state-of-the-art in high speed VLSI designed 
for signal processing (i.e. real-time applications.) We contend that the various technologies 
for high speed and very wide time-bandwidth product computations (including advanced 
VLSI and special acousto-optical systems) are now mature enough to investigate alternate 
paradigms for realtime control law implementation. 

State Space Alternatives for Distributed Parameter Systems. For application to 
control design computations for flexible space structures we note the use of state space models 
may be particularly awkward for the typical computations required to obtain time responses. 
This is true in general for distributed parameter systems since the appropriate state space 
models will involve a coupled set of integral-partial differential equations (IPDE's). However, 
for the class of models typically encountered in dynamics of space structures we observe that 
transfer function (or frequency response) models may be particularly significant. 

We suggest that the use of transfer function models for control design can offer significant 
alternatives for control system design for the following reasons. 

1. The interplay between 'state-space' and 'input-output' methods—evident in the theory 
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of finite-dimensional systems [3, 4]—is even more important for distributed parameter 
systems with potential for profound results in basic engineering methods. 

2. Precise engineering specifications for distributed control system designs are extremely 

difficult to formulate in terms of state-space models (e.g., in terms of PDE's and their 
coefficients). These specifications can be rather easily characterized in terms of the 
system frequency response. 

3. By working with the transfer function model directly, alternate control law implemen- 
tations can be discovered which may be simple to implement and very effective. 

4. It is convenient to characterize model uncertainty in a frequency domain setting and 
this approach provides insight useful for control system design [5j. 

Remarks on Implementation of Distributed Control For a variety of reasons dis- 

tributed state feedback control laws may be difficult to implement and state observer-based 
control will require the on-fine realization of a distributed parameter system. In the mod- 
ern, state-space approach to design the control law realization is linked with the state space 
model for the system. We assert that this paradigm may seriously restrict design options 
for control law realization for a large class of linear, time-invariant systems including dis- 
tributed parameter effects. We prefer to think more generally of a linear, dynamic control 
law as modeled by a convolution equation, 

u{t) = C(t)*y(t), 

where y(t) are available sensor measurements and u(t) are control actuation signals. For 

linear, time-invariant system models the control law can be specified by its impulse response 
C(t) or in the frequency domain as a transfer function C(s) which may be irrational. The 
principal innovation of this project is that control system design for distributed parame- 
ter systems may benefit from decoupling the computation and realization design steps. A 
principal project objective of this study is to assess the capability for alternate methods for 
control law realization which may offer reasonable approximation of an optimal irrational 
transfer function for a control law. 

2    Technical Background for Project Innovation 

2.1     Transfer Function Models for Flexible Structures 

Generic models for the elastic response of flexible structures are often described as spatial 
continuum via a Partial Differential Equation (PDE) of the form, 

where w(t,z) is an N-vector of displacements of a structure fi with respect to some equi- 

librium for Q is a bounded, open set in $tN [1].   The (vector) z £ fi is a coordinate in ft. 
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We assume the boundary dQ is smooth. The mass density m(z) is positive definite and 

bounded on <9fi. The damping term Dodw/dt models both (asymmetric) gyroscopic and 

(symmetric) structural damping effects. The internal restoring force A0w is generated by 

a time-invariant, differential operator AQ for the structure. For most common structural 

models, A0 is an unbounded, differential operator with domain D(A0) consisting of certain 
smooth functions satisfying appropriate boundary conditions on <9ft. Thus, for these prob- 
lems, D(A0) is typically dense in the Hubert space Ho = £2^) endowed with its natural 

inner product (x,y}0 — /n xT(z)y{z) dz- Often (but not always), the spectrum of Ao, <r{A0), 
consists of discrete eigenvalues with associated eigenfunctions which constitute a basis for 

The applied force distribution F(t, z) can be thought of as consisting of three components 

F(t, z) = Fd(t, z) + Fc(t, z) + Fa(t, z) (2.2) 

where Fj is N-vector of exogenous disturbances (possibly forces and torques), Fc is a continu- 

ous, distributed controlled force field (an available option in only some special applications), 
and Fa represents controlled forces due to localized actuation; 

Fa(t,z) = Y,bj(z)uj(t) = B0u(t). (2.3) 

The actuator influence functions bj(z) are highly localized in Q, and can be approximated by 
Dirac delta functions. We assume that a finite number p of measurements can be made as: 

y(t) = C0w + C0 
, dw 

dt 

Ho, Co '•  ito 

(2.4) 

3?p, and C'o '• "Ho  —*  3?p where y(t) is a p-vector. The operators Bo : 3?m 

are bounded. 
A natural assumption for structural problems [1] is that A0 is self-adjoint with compact 

resolvent and discrete (real) spectrum which is bounded from below. The system state can 

then be considered as an element of a Hilbert space 7i = D(AQ ) x 7i0 with the energy norm 

\\
X

\\E 
= {w,A0w)0 + (mw,w)o (2.5) 

where the first term represents potential energy and the second term is kinetic energy. Thus 
the (abstract) state space mot/el can be written 

x(t,z)   =   Ax(t,z) + Bv(t) 

y(t)   =    Cx(t,z) 

w here 

A = 
0      ; 

-Ao    -Do 
B = 

0 

Bo 
1  C — [Co, C0] 

(2.6) 

(2.7) 

For the elastic dynamics of space structures, there is always some (possibly small) damping 
D0 appearing in (2.1) which causes A to be dissipative. Thus the criteria of the Hille-Yoshida- 
Phillips theorem [6] are satisfied and A generates a Co-semigroup with an operator which 



SEI-89-03-15-WB 5 

we write suggestively as eAt. Moreover, such models are 'hyperbolic' [1] in the sense that 
the semigroup is a contraction, i.e., \\eAt\\ < 1 and all but the zero frequency poles are only 
slightly damped; \\eAt\\ < e~St for some small 8 > 0. We remark that some popular models 
for structural elements such as beams with material damping may not. fit in this framework 

[7, 8]. However, this framework includes models appropriate for considerations of wave-like 
dynamics which propagate causally in the spatial domain. For such models, the question of 
how to compute controls u(t) and system response x(t) focuses on the so-called weak solution 
of (2.6); 

z(«, z) = eAtx(0, z) + f eA^-a)Bu(<r)d(T. (2.8) 
Jo 

PDE's encountered in generic models of the form (2.1) represent the time evolution of 
certain physical systems and are typically of either hyperbolic or parabolic type.  To clarify 
terminology consider the system of first-order, partial differential equations defined for t > 0 
and 0 < z < L 

dw       - dw 

If E is nonsingular, then (2.9) can be written 

dw dw 
-=F- + HW (2.10) 

where F — E~1F, H = E'^H. If F has only real eigenvalues and a complete set of 
eigenvectors, then the system is said to be hyperbolic (see, for example, Zauderer [9]). If 
there are multiple real eigenvalues and less than a complete set of eigenvectors, then the 
system is of (partial) parabolic type. If all of the eigenvalues are complex, the system is of 
elliptic type. Systems with complex eigenvalues are not causal and will not be considered 
further. 

If E is singular, (2.9) can give rise to mixed systems of all types. Our interest in this 
case will be limited to purely parabolic systems of the type 

dw     ^.d2w        dw 

m=Ges+FH;+Hw <211> 
which commonly arise in engineering problems. 

In addition to equations (2.9) or (2.11), there are associated initial and boundary condi- 
tions. For equation (2.9), these conditions take the general form 

initial conditions u;(z,0) = /(r) 

boundary conditions    Eju;(0,<) + T\w(L,t) = g(t) 

where dim(<7)=dim(tu); and for equation (2.11), they take the general form 

initial conditions w(z,0) = f(z) 
boundary conditions    Exw(0,<) + E2ff(0,*) + TlW(L,t) + T2^f(L,t) = g(t) 

where dim(^)=2dim(tu). 
It is well known that the coefficient matrices in (2.12), (2.13) must satisfy certain con- 

straints if the problem formulation is to be well-posed. In the hyperbolic case (equations (2.9) 

and (2.12)), these constraints essentially require that the boundary conditions be compatible 
with the wave directions. 
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2.1.1    Frequency Response Models for Elastic Structures 

The class of models discussed above captures the time response of causal, linear systems 
arising in the modeling of flexible structures. For the computation of optimal control laws 
for such systems we are concerned with models for the effective system frequency response. 
A complete modeling approach is described in [2] which we summarize in the next few 
paragraphs. 

The complete system transient response can be characterized in the frequency domain 
in terms of the superposition of the forced response (modeled via a transfer function) and 
the free response (modeled via a Green's function). To illustrate the approach consider a 
hyperbolic model in one space dimension 0 < z < L, 

£M = F*|i> + Hl(M)+Bv(M) (2U) 

subject to boundary conditions 

ElSc(*, 0) + I>(i, L) = Df(t), (2.15) 

and initial conditions 
x(0,z) = x°(z)e Hn(0,L). (2.16) 

Here, x is an n-vector valued state x € Hn(0,L), v £ W'(0, L) is an ^-vector valued dis- 
tributed disturbance, / is m-vector valued boundary interactions, F, H are real n x n 
matrices with F nonsingular and diagonalizable [9], and Ei, T\ are n x n matrices. After 
taking Laplace transforms in the temporal variable t, we obtain 

X{s,z) = [   Gr(s,z,w)M(s,w)dw + HBC(s,z)F{s) (2.17) 
JO 

where 
M(s,z) = x°(w)-CV(s,w), 

and X, V, F are the Laplace transforms of x, v, f respectively. The function Gr(s,z,w) 
is the Green's function [10, 11] for (2.14), (2.15) and HBC{S,Z) is a transfer function from 
boundary interactions to state. Since in most cases of practical interest the control of flexible 
structures will be effected by actuators whose influence functions are highly localized, we 
have formulated our model with boundary control only. 

The system transfer function with respect to boundary control has the form 

HBC{s,z) = N{s,z)D (2.18) 

where 

N(s,z)   =   $(5,z)[S1+r1$(5)L)]-1
) (2.19) 

The Green's function for (2.14), (2.15) is the solution to 

9Gr(^Z,W) = F~l [si - H) Gr(*, z, w) + In6(z - w) (2.20) 
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subject to the boundary conditions 

Ex Gr{s, 0,w) + T1Gr(s,L,w) = Q (2.21) 

where S(-) is the Dirac delta function [10], [11]. Further discussion of the computation of the 
required Green's functions is discussed in [2]. 

For the case of a parabolic model we begin with the system equations in the form, 

dx(t,z) 82x(t,z)      „dx(t,z)      „ ,     x      „ ,     x , 
—g~ = G    ^  ' + F—^ + Hx(t, z) + Ev(t, z) (2.22) 

subject to 2n boundary conditions 

s1x(«,o) + s2^M> + rx*(*, L) + r2^M^ = Df(t), (2.23) 

and n initial conditions 
x{0,z) = x°(z)enn(0,L). (2.24) 

Let S = [Ei,!^] and T = [r^Tz]—each In x 2n real matrics.  The transfer function from 
boundary control is then of the form 

HBC(s,z) = M(s,z)D, (2.25) 

where 

A(«) 
0„ /„ 

-G-\H-sIn)   -G~lF 

${s,z)   =   eA(')r, (2.26) 

M(s,z)   =   [I^OMs^^ + T^s^L)}-1. (2.27) 

Hybrid Models for Flexible Space Structures. In most applications, models for the 
dynamics of flexible structures involve interaction between various elastic and rigid compo- 
nents. In the particular case of flexible structures associated with large space structures, the 
potential topological configurations can be quite complex. Various elements such as beams, 
truss structures, cables, membranes, etc., may have dominant, distributed parameter effects. 
Typically a central body or bodies represent large concentrations of mass with respect to 
the overall low mass density of the flexible structure. These are most effectively represented 
by lumped parameter models of their rigid body dynamics. Hybrid models can provide an 
effective tool for analysis of dynamics of vibrations and their effect on small angle motions 
for complex space platforms. 

To assemble the hybrid model we consider the Distributed Parameter System (DPS) to 
be modeled as either the hyperbolic or parabolic (or mixed) cases which, as we have seen, 
can be expressed in the frequency domain in the form 

rL 

Xd(s, z)=       Gr(s, z, w)M(s, w)dw + HBc(s, q)Fd(s) (2.28) 
Jo 
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where 
M(s,w) = x°d{w) - EV{s,xv). (2.29) 

Clearly, (2.28)-(2.29) can represent a disjoint collection of distributed elements such as beams, 
cables, etc. 

The Lumped Parameter System (LPS) component model are combined into a single LPS 
state model of the form 

i((t) = Atx((t) + Btfe(t), x° = xt(0) (2.30) 

with x; € R ' = Xi a finite dimensional real space. By taking Laplace transforms in (2.30), 
we write (analogous to (2.28)) 

Xt(s) = Riisjx* + H((s)Ft(s), (2.31) 

where Rt(s) — \sl^t — A(\~x is the resolvent for the (matrix) operator Ai and Ht(s) = R((s)B. 
Finally, the interconnection of component systems is resolved through a topological con- 

straint relation consisting of m = mj + m.( linear equations; 

f(t) + TlXd(t, 0) + T2xd{t, L) + T3xt(t) = Ku(t) (2.32) 

x(t,z) (2.33) 

where u(t) is a k-vector of control inputs to the hybrid system, 7i,7j are m x Nj, T3 is 
m x N(, and K is m x k real matrices. The hybrid model state space consists of elements of 
the form 

'    *t(t)    ) 
, **(t,z) ) 

which are N = Nj + ^-valued functions of z € [0,L], t > 0.  The resulting model has the 
form 

rL . . . . 
X{s,z)=       Gr(s,z,w)M(s,w)dw + R{3,z)x°t + HBc(s,z)U{s), (2.34) 

./o 

where M(s,w) is given in (2.29). The complete system response is given in terms of the free 
response to initial conditions in the LPS state via an N x N( matrix transfer function and 
the free response to initial conditions in the DPS state given by a N x Nj Green's function 
<7ri 

R(s,z)   = 

Gr(s,Z,w)      = 

T3R((s), 
INt-Ht(s)Qt(s) ' 

_ -HBC(s,z)Q2(s) . 

-HtWQds) 
Gr{s,z,w)-HBc(s,z)Q2(s) 

P(s,w) 

(2.35) 

(2.36) 

where 

Q(») = [iM + Q(s)r = 

Q{$)   =   [T3Ht{s), ^^0(3,0) +T2HBC(s,L)}, 

P{s,w)   =   TiGr{3,0,w) + T3Gr{s,Ltw). 

(2.37) 

(2.38) 

(2.39) 



SEI-89-03-15-WB 

The forced response is given by the transfer function from boundary control, 

H(s,z) = 
Ht(s) 0 

0       HBC{s,z) 
Q{s)K. (2.40) 

In the phase 1 effort we considered the transfer function models of several simple sys- 
tems respresentative of vibration control problems. We would like to emphasize that the 
control methods we have considered and tested in Phase 1 are by no means limited to DPS 
applications. In fact we illustrate the computations required using a standard finite element 
model in one of the benchmark problems considered. The significant aspect of the modeling 
formulation above is in the fact that we require only frequency response models and there- 
fore the computational approach is general enough to include a class of DPS large enough 
to encompass flexible space structure applications. 

2.2     Control Synthesis via Wiener-Hopf Methods 

A complete frequency domain design method for multi-input/multi-output (MIMO) systems 
based on a optimal Wiener-Hopf problem was first given by Youla et al [3] in 1976. The 
method described by Youla and his colleagues are very significant for control system design 
for several reasons. The method directly addresses several key design objectives and tradeoffs 
for closed loop control and uses the setting of Wiener-Hopf optimization to resolve tradeoffs. 
The formulation of the problem in the frequency domain permits both stabilization and 
system performance to be addressed in the same objective. This is accomplished by the 
characterization of an algebraic condition depending on the transfer function of the plant 
which must be satisfied by any closed loop controller which stabilizes this plant. Then 
performance objectives can be defined in a frequency dependent setting without regard to 

stability. The solution of the resulting optimal control problem is obtained by solving a set of 
Wiener-Hopf problems subject to the constraint that the controller must stabilize the plant. 

Youla's approach focuses on a specific control architecture displayed in Figure 2.1 of prac- 
tical significance in a wide variety of control problems where P(s) is an n x m plant transfer 
function and F(s) is n x n and models sensor measurement dynamics. The incorporation of 
nxn feedforward transfer function L(s) is included to permit compensation for load distur- 
bances which can be sensed prior to their effect being observed on the plant. In cases where 
plant delays are appreciable this feature may add substantially to the ability to compensate 
for output loads. The design model proposed offers several significant alternatives for con- 
trol of flexible space structure control where a variety of sensors may be available which can 
predict dynamic loading under varying environmental conditions such as thermal gradients 
encountered with exposure to sun fight. 

Exogenous disturbances d, sensor noises ri(,nf, and desired set points u are modeled as 
zero mean, wide sense stationary random processes and are therefore characterized by their 
respective power spectral densities; Gd(s), Gni(s), Gn/{s), Gu(s). Notice that no assumption 
is made about the form of the controller C(s) except the obvious dimensions: m x n. 

A significant feature of the Youla method is the algebraic parametrization of all stabi- 

lizing compensators for a given plant and sensor combination. Following [3] we will call the 
combination of P and F admissible [3] if each transfer function is free of hidden modes and 
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nf , Fo(s) j l\ •©• 

Figure 2.1: Multiloop Control Configuration for Wiener-Hopf Design 

if the combination does not introduce cancellation of poles and zeros in the Closed Right 
Half Plane (C+). (This amounts to a requirement for stabilizability and detectability of the 
plant model.) Given that P and F are admissible let 

F(s)P(s) = Dj^Ntis) = Nr(s)D;l(s) 

where N(, D( (resp. Nr, Dr) are left (right) coprime factorizations. As a result there will 
always exist a pair of polynomial matrices X(s) and Y~(s) such that [12, 4] 

Dt(s)X(s) + Nt(s)Y(s) = I. 

Then the closed loop system is asymptotically stable if and only if the controller is of the 

form 
C(s) = [Y(s) + D,(s)K(*)][X(») - Nr(s)K(s)}-\ (2.41) 

where K is any m x n real rational matrix, analytic in C+ and det[^Y(.s) — NT(s)K{s)\ ^ 0. 
Thus all stabilizing controllers can be expressed in terms of a "stable parameter", A'(s). 

With the above parameterization in hand synthesis can be based on an optimal con- 
trol problem which attempts to minimize tracking error e = u — y subject to a power-like 
constraint on the control r. Thus let1 

Jt = r— E ITT r° e{s)e.(s)ds) 
2lTl I ./-too J 

subject to a constraint 

J.= 
2ni 

E \TTf^Pt(s)r{S)r.(s)P,.{s)dsY 

(2.42) 

(2.43) 

'We use the notation u.(s) — uT(—a), E denotes expectation, and Tr denotes trace. 
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where P,(s) is the transfer function from the control signal r to those sensitive plant modes 
which must be protected against saturation. The resulting optimal control problem is to 
find the controller (i.e. the parameter K(s)) such that the cost 

J = Jt + U, (2.44) 

is minimized where K(s) is allowed to vary over all stable transfer functions of appropriate 
dimensions and k > 0 is a real parameter which plays the role of a Lagrange multiplier and 
effectively permits tradeoff between tracking and saturation. 

A complete solution can be obtained by the following procedure: 

Wiener-Hopf Design Procedure (Youla's Method) 

Step 1  Obtain coprime factorizations 

F(s)P(s) = D;l(s)Nt(3) = Nr(s)D:l(») (2-45) 

Step 2 Compute spectral factorizations 

D„[P.P + kQ]Dr   =   A.A (2.46) 

DtG.Di.   =   ftft. (2.47) 

where ft, A are analytic together with their inverses in CRHP and 

Ge = <?« + {FP0 + L)Gd{FP0 + L). + F0GnfF0. + L0GniL0„ (2.48) 

is the combined power spectral density of the exogenous inputs to the control system. 
2 

Step 3 Find a solution X(s)Y(s) to the Diophantine equation; 

Dt(s)X{s) + Nt(s)Y{s) = Ip. (2.49) 

Step 4 Compute the transfer function 

Z{s) = DT.P.[GU + P0Gd(FPo + L).]DU (2.50) 

and the stable parameter3 

K(») = A"1 ({A:1Zn;1}+ + {AIT1}'!)}.) ft"1 - D;lY. (2.51) 

Then the optimal controller has transfer function given by the parametric formula 
(2.41). 

2We remark that the computations of the spectral factors in (2.46) (resp. (2.47)) effectively replace 
the computational step of solving a Riccati matrix equation for the control (resp. filter) problem typically 
encountered in modern state-space methods for control design. For systems with distributed parameter 
models the Riccati equation is a PDB and therefore difficult to solve by standard methods. 

3A rational (matrix) function has a (partial fraction) expansion A(a) = {.A(s)}+ + {.A(s)}_ + {^(i)}^. 
where {.}+ (resp. {.}_) is the part analytic in Res > 0-the causal part (Sees < 0-the anti-causal part) and 
{.}x is the part associated with poles at infinity. 
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The design method permits direct evaluation of control design tradeoffs in terms of certain 
critical frequency response functions. From the control architecture shown in Fig. 2.1 we can 
readily derive the closed loop frequency responses as 

y   =   PCS{u-Fonf-Lont) + [Po-(FP0 + L)CS]d (2.52) 

r   =   CS[u-F0nf-L0nt-{FP0 + L)d} (2.53) 

e    =    {I~PCS)u + PCS{Fonf + Lont)-[P0-PCS{FP0 + L)]d 

where the system sensitivity operator 

(2.54) 

S = [I + FPC}-\ (2.55) 

is a critical transfer function whose frequency response highlights the broadband action of 
the feedback control law. For the optimal control computed by the method outlined above 
the system sensitivity is given by 

S = (X - NrK)Di, (2.56) 

a relation whose simplicity underlies the algebraic characterization of feedback design from 
the frequency response viewpoint. 

The basis for resolving the engineering tradeoff of closed loop control action in terms 
of the conflicting requirements for stability, disturbance rejection, command tracking, and 
saturation avoidance is the application of Wiener-Hopf method for the solution of the op- 
timization problem outlined above. It can be easily shown that the optimal performance 
objectives Jt and J, are readily computed from the frequency domain solution above from 
the following formulae: 

Jt   =    — /     Tr *t(ju>)du, (2.57) 
ZlTJ J-joo 

J.   =   — r°° Tr i.(ju))du, (2.58) 
Zirj J-joo 

where 

$e - {I-PR)Gu(I-PR). + (PR)G!(PRl, (2.59) 

$, = QRGeR„ (2.(30) 

G\ = F0GnfF0. + L0Gn(L0„, (2.61) 

Pd = FPa + L, (2.62) 

R = (Y + DrK)D<. (2.63) 

Thus the design method proceeds by resolving the tradeoff between tracking performance 
(requiring high loop gains) and saturation limitation of the critical plant modes (which will 
limit loop gains) by direct implementation of the composite cost relative scale factor k in 
(2.44) which plays the role of a Lagrange multiplier. 
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Remarks on the Extension of Youla's Methods. Recent activity in the theory of 
robust control system design methods has focused on the solution of certain minimax or 
worst, case design problems described in terms of frequency response models and frequency 
dependent, model uncertainty [12]. Solutions have been obtained for a class of H°° optimal 

control design problems by extending the application of the algebraic characterization of 
the class of stabilizing controllers for a given plant given in (2.41). In Youla's original work 
the notion of coprime factorization was based on the natural choice for rational transfer 
functions: the factorization was with respect to the ring of polynomials. This paradigm 
ultimately limited the popularity of Youla's original design methods since for all but rather 
simple systems the factorization steps became computationally cumbersome. 

The modern approach described by Vidyassagar [12] extends Youla's characterization 
of all stabilizing controllers by introducing the idea of obtaining coprime factorizations of 
transfer functions over the ring of stable, rational transfer functions. It is shown in [12] that, 
the set of all transfer functions with poles contained in a half plane form an algebraic ring 
with respect to the usual operations of addition and multiplication. This characterization 
is of practical importance for control system design since one can now further constrain the 
optimal control computation so that a prescribed degree of stability will be obtained in the 
closed loop. In general, the extension of this algebraic characterization of the class of sta- 
bilizing controllers for irrational transfer functions is incomplete, but for the special class of 
irrational transfer functions arising in flexible structure control the essential characterization 
is now complete. 

2.3    Wiener-Hopf Design for A Class of Irrational Transfer Functions 

The formal extension of the algebraic computations for stabilizing and optimal control syn- 
thesis in the frequency domain is an area of active research [12, pp. 357]. In this section 
we summarize available results for a limited class of 'pseudo-meromorphic' transfer func- 
tions which include most linear, time-invariant models arising in control of flexible space 
structures [2]. We refer the reader to recent work of Baras for proofs and details [13, 14]. 

The results of Baras extend the critical constructions required for Wiener-Hopf design 
to the class of 'pseudo-meromorphic' transfer functions, denoted as A•, containing transfer 
functions 

GeH°°(C+) 

where C+ denotes the closed right half plane and H°° is the Hardy space of bounded analytic 
functions on C+. Such transfer functions have (weak) coprime factorizations over A/(«4~)4 

T(iw) = N,(iu)D;l(iu) = Df'ftuOJVtfsw) 

in the sense that Nr, Dr, D(, N( are in H°°(C+) provided that D(, Dr are inner [4, pp. 635]. 
Alternately, we say that N(s)(p X m), D(s)(m x m) are strongly coprime if there exist 

6 > 0 such that 

\\N(s)x\\ + \\D{s)x\\ > 6 > 0 

4Let M(A^i) be the set of matrix transfer functions (of dimensions determined by the context) with 
elements in .4,^'. 
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for all x G C" and s G C+. Then the Carleson Corona theorem asserts that N, D are strongly 
coprime if and only if there exist A', Y in H•Xm such that 

NY + DA' = 7m. 

Finally, the algebraic constructions required for the Wiener-Hopf control design method 
described above are extended by the following result [15, 16]. 

Theorem 1  Assume that P,F,L,C G A• and FP G A•. Then all of the following hold. 

1. The singularities of [7 + CFP]~lFP are the zeros of det[7>*A + NtY]. 

2. There exist stabilizing controllers provided that N(, D( are strong coprime. 

3. If Nr, Dr are strongly coprime then the closed loop system is BIBO (or exponentially) 
stable if and only if 

C = (Y + DrK){X - KK)-1 

where K is any element of «4~, such that det(A — NrK) ^ 0, analytic in %tes > 0 
(%tes > 0), and X and Y are solutions of the Diophantine identities 

DeX + N(Y = 7. 

Computational Requirements for Wiener-Hopf Methods For rational transfer func- 
tions the required computational steps outlined by Youla and his colleagues for Wiener-Hopf 
control can all be carried out over the ring of polynomials. More recently, the approach 
outlined by Vidyassagar [12] suggests that by performing computations over a ring of stable 
transfer functions (denoted S and including all functions rational, proper, and analytic in 
C+ U {oo}) the required computations can be directly supported in terms of state space 
realizations for the individual transfer functions. The key observation is that the collection 

of all proper, rational transfer functions with poles in C+ form an algebraic ring which has 
the structure of a principal ideal domain (<S). 

Next we briefly outline several options for extending the required computations to A•. 
Just as in the rational transfer function case, the nonuniqueness of state space realizations 
for transfer functions may offer computational alternatives. Computational requirements for 
Wiener-Hopf synthesis include the following. 

1. Coprime Factorization. For rational transfer functions the coprimeness condition for 
a pair (N, D) essentially amounts to a requirement for noncollocation of zeros for N and 
D. In general, irrational transfer functions may not have coprime factorizations[12]. 
In our studies the class of pseudo-meromorphic transfer functions includes most mod- 
els for structural vibration control. Thus we have the existence of (strong) coprime 
factorizations in A^. 

2. Solution of Diophantine Relations. Restricting attention to pseudo-meromorphic 
transfer functions gives the required existence of solutions to (2.49). Despite the poten- 
tial lack of convergence of Euclidean division in ,4~Berenstein and Struppa [17] have 
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obtained explicit solutions to equations of the form (2.49) for (N, D) strongly coprime. 
The formulae obtained in [17] are nonalgebraic and extremely complex. Approximate 
solutions to the Bezout relations can also be obtained by sampling the Fourier response 
of the individual terms D(, N(, X, Y on a finite set of frequency samples. This reduces 

the computational problem to that of solving a set of symultaneous linear equations. 

The insight from the algebraic approach to synthesis of stabilizing control [12] indicates 
that a particular solution X,Y to (2.49) is a nominal stabilizing feedback control; K = 
YX'1. For most models of flexible structures arising in space applications the plant 
is nominally stable except for a finite number of poles either at the origin (associated 
with rigid body inertias) or in the right half plane. For such systems we have obtained 
direct methods for computing the required (stable) coprime factorizations. (See for 
example benchmark problem 2.) 

3. Spectral Factorization and Causal Projection. In most cases arising in flexible 
structure control the resulting irrational transfer function model is meromorphic. In 
some simple cases the computational problems can often be reduced by the identifica- 
tion of an alternate state realization [18]. A more general approach is to use frequency 
sampling. Methods for matrix spectral factorization have been studied as alternatives 
to solving infinite dimensional Riccati equations by Davis [19] and Bennett [20] where 
a numerical algorithm is described. In the next section we describe results of testing a 
spectral factorization algorithm based on frequency response sampling. 

4. Linear Fractional Combinations. All remaining constructions involve linear frac- 
tional transformations which can be readily supported via either explicit transfer func- 
tion computations or frequency sampling. 

Our conclusion from this survey is that frequency sampling offers an attractive alternative 

for the computational requirements of Wiener-Hopf synthesis and can readily be extended to 
transfer functions of pseudo-meromorphic type. The computational approach then obtains a 

frequency sampled approximation to the ideal, optimal controller for the given design problem 
and essentially provides a specification for such control. We remark that in contrast to 
state-space computations this approach decouples the realization of the controller from the 

computation of its response. 

3    Phase 1 Project Results: Computation of optimal control for 
flexible structures by frequency sampling. 

3.1     Frequency Response Design Method for Vibration Control 

In the background material of section 2 we have described the basis for the design approach 
we have investigated in Phase 1 study for flexible space structures. Wiener-Hopf optimiza- 
tion is the basis for evaluating engineering tradeoffs with respect to the choice of required 
control law. For LQG type designs the tradeoff analysis from quadratic optimization results 
in a pair of feedback gain matrices.   In the method we employ, the result is a complete 
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controller frequency response model. The Phase 1 effort has focused on the demonstration 
of the required frequency response modeling and control design computations for some sim- 
ple benchmark problems in vibration control and isolation for flexible structures. We have 
demonstrated the feasibility of solving the Wiener-Hopf problem using frequency sampled 

data representation for: 

1. the plant model transfer function, including the frequency response of the elastic struc- 

ture to excitation by localized (point wise) actuation and possibly distributed distur- 
bance excitation, 

2. the sensor/actuator model transfer function, including provisions for both feedforward 
and feedback processing, 

3. the PSD of exogenous driving signals, including sensor noises, output disturbances, and 
command inputs, 

4. control objectives, including the specification of desired closed loop performance in 
terms of frequency dependent quadratic objective functions for both tracking and sat- 
uration avoidance. 

In our benchmark problems we have considered both irrational transfer functions arising 
from standard model of a flexible beam and finite element model of a hybrid structure 
representing a problem of active vibration isolation. The method performs with success in 

both cases. Central to the success of the effort is a set of computational algorithms and an 
interactive environment for computation with frequency response models. One feature of 
the sampled frequency response computations is the requirement to choose a bandwidth and 
sampling interval for the model representation. Although guidance for these choices can be 

obtained from analysis of the transfer function models, it has been our experience that some 
fine tuning is desirable in applications. The interactive environment for frequency sampled 
computations supports this requirement. 

3.2    Computational Algorithms for Frequency Domain Control Design 

3.2.1     Coprime (stable) Factorization 

Many flexible structure models involving hybrid dynamic models often include a finite num- 

ber of unstable poles. In such cases the coprime factorization of the plant transfer function 
is a critical step which will guarantee the stability of the closed loop control system. The 
importance of the class of pseudo-meromorphic transfer functions is that, the notion of stable 
coprime factorization can be extended to these systems. 

By way of review, recall that a rational p x m strict proper transfer function, P(s) has a 
minimal realization in terms of state space, matrix parameters (A,B,C) 

P{s) = C(sI-A)-1B, (3.1) 

where (A,B) is controllable and (A, C) is observable. Then the notion of coprime factor- 
ization with respect to a class of "stable" systems for which all members have poles within 
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an arbitrary (left) half plane, can be connected with state space computations as follows. 
Let S be the class of transfer functions with poles p< such that 9?e p,- < a. Given a re- 
alization (A,B,C) for P(s) then under the above conditions there exist 5-stable coprime 
factorizations, 

P = D;1Nt = NrD;\ (3.2) 

which satisfy a doubly Diophantine relation, 

Yr     Xr DT   -Xt 

Nr     Yt 
= /P+m. (3.3) 

It can be easily verifed that the individual transfer functions Nr, Nt, Dr, Dt,Xr, Yr, Nt, D( € 
S can be obtained as: 

Nt = C{3l-Aoy
lB, 

Dt = I-C(sI-A0)-
lF, 

Nr = C{sI-Ac)-
lB, 

Dr = I-H{sI-AeY
lB, (3.4) 

Xr = H(sI-Aoy
lF, 

YT = I + H(sI-A0)-
lBt 

Xt = H(sI-Ac)-
lF, 

Yt = I + C{sI-Aey
lF, 

where the n x n matrices Ac = A + BF and A0 = A + HC are constructed by appropriate 
choice of the state feedback gain matrix F and the output injection matrix H so that the 
eigenvalues of Ac and A0 are contained in S. 

The computations of coprime factorization can be readily extended to the class of models 
representing the dynamics of flexible structures under the following assumption. Let P(s) 
be an irrational transfer function such that 

P{») = Ps(s) + Ps(s) (3.5) 

where Ps G 5 C A• and Pj is rational and has (a finite number) of) poles outside the half 
plane defining S\ i.e., P(s) has only a finite number of "unstable" poles. In this case we 
can obtain the stable coprime factorization for P{s) with respect to S as follows. Obtain a 
coprime factorization 

Ps = Nrb;\ 

the unstable, rational term. This can be achieved by the state space constructions described 
above without reference to Ps—the irrational spectra of P. Then P has coprime factorization 

P = NrD;1 = [Nr - PsDr\b;\ (3.6) 

where Nr, DT are 5-stable. The separation of terms in (3.5) is readily carried out given P(s) 
by computing the residues of the finite number of unstable poles contributing to Pg. For most 
flexible structure problems the number of unstable poles is small arising from the interaction 
of elastic dynamics of the distributed structure with localized rigid body dynamics. 
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3.2.2    Solution of Diophantine Relations 

The characterization of the class of all stabilizing controllers for a given rational transfer 
function, P(s), as obtained by Youla and his coworkers, is given in terms of a roprime 

factorization P — D^1 Nt, and solution to a Diophantine relation (2.49). All stabilizing 
controllers C'(J) for P(s) can then be described by the linear fractional transformation 

C = \X-KNi)-l[Y -KDt\. 

The characterization is algebraic for rational transfer functions and the computations can 

be effectively carried out by state space computations as descirbed in the previous section. 
For irrational transfer functions for which (strong) coprime factorizations exist we can 

readily obtain solutions to the Diophantine relation by frequency sampling. Rewriting (2.49) 
in the form 

- X(s) 
[Dc(s),Nt(s)} 

Y(s) = IP, (3.7) 

it. is clear that the required computation obtains a right inverse for the p x m + p matrix 
[D((s), N((s)]. This is readily obtained by frequency sampling using one of several standard 

numerical algorithms. A numerically stable approach is to use Singular Value Decomposition 
(SVD) of the p x m + p matrix obtained at each complex frequency sample s. The routine 
CSVDC contained in the Linpack software provides a direct way to obtain the right inverse 
(i.e., Moore-Penrose pseudo-inverse) from the SVD. 

3.2.3    Spectral Factorization and Causal Projection 

A critical computational requirement of the design method we have investigated is the re- 

quirement for solving two instances of Wiener-Hopf optimization based on frequency response 
data. Spectral factorization arises in optimal control and filtering problems by association 
with the solution of a Wiener-Hopf integral equation; 

r h(t - T)W(T)CLT = f(t) (3.8) 
Jo 

for t > 0 where, for example, h(t) may be the covariance matrix of some noise process, f(t) 
is a specified causal function, and w(t), for t > 0 is the solution sought. The Wiener-Hopf 
technique solves (3.8) by the identification of a factorization of the Laplace transform 

H(s) = r h{t)e-atdt, 
J—<x> 

of the form 

H(s) = F(s)FT(-s) (3.9) 

with the property that F(s) is analytic together with its inverse in the closed right half plane, 
C+. For the case of H(s) a rational (possibly matrix valued) transfer function, existence 
and uniqueness of the spectral factorization above follows under the conditions: 

1. H(s) — H(s)\ i.e., H(s) is the transform of a real-valued function h(t). 
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2. H(s) = H.{s); i.e., H(s) is "para-hermittian" 

3. H(s) is of normal rank; i.e., full rank almost everywhere in C. 

4. H(iw) is positive, semi-definite for u) € R. 

More generally, (following the classical theory of Gohberg and Krein [21]) we have for the 
typical optimal filtering or control problem that H(s) = I + G.(s)G(s) where G(s) is the 
transfer function of the system to be controlled and under the assumption that G.G is: 

1. positive, semi-definite for s = iu>, 

2. G.G is the transform of a function which is both L\ and L2, 

then the spectral factorization (3.9) exists and has the property 

F(iuf) - I G T (Lt n Lt) (3.10) 

(where L* denotes those L\ functions with positive support) and F(s) = F(s). 
We are interested in obtaining a consistent, computationally efficient approximation for 

spectral factorization problems arising from transfer functions G(s) belonging to the Hardy 
space H2 nH°° (which may include irrational cases). The approach we have in mind involves 
sampling and interpolation of the frequency response data H(iw). 

We will also consider the associated problem of causal projection; 

V+ {I + f°° f{t)e-iutdt} = 1+ f°° f(t)e-iutdt. (3.11) 

Then, in the scalar case, if F(s) is the scalar causal factor in (3.9) and $(a) = \nH(s) we 
can write 

*(*)   =   V+ {*(*)} + V. {#(*)} (3.12) 

=   In F(s) + In F.(s) (3.13) 

so that the spectral factor can be obtained as F(s) = expV+ {In H(s)}. In the matrix case we 
employ a recursive algorithm for spectral factorization which is loosely based on a Newton- 
Raphson iteration for an associated Riccati equation. First, we consider computation of 
causal projection and spectral factorization in the scalar case by frequency sampling. 

Spectral Factorization of Scalar Data Sequences. In the Phase 1 effort we have devel- 
oped and tested computer algorithm for causal spectral factorization of frequency response 
samples based on an interpolation method of F. Stenger [22]. Roughly, Stenger's method 
offers an approximation of a function g(u) € T (Lp) as an expansion 

*«(«)=  f) g((j + b*u>)xj(») (3-14) 
j=-oo Z 
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where Aw is a fixed sampling interval, and \j  (w) ls tne 3th (approximate) characteristic 
function which approachs the ideal: 

xM It for w e (>Aw,(; + l)Aw) 

else 
(3.15) 

We summarize the theoretical basis for Stenger's method in the following theorems. 

Theorem 2 Let g <E F (£P). Then 

1 
^•>H=  £ g((j + -)A»)xM (3.16) 

j=-oo 

approximates <? in the sense that \\g — <7^||p —• 0 as (Aw, k) —• (0+, 1 — ) where the approxi- 
mate characteristic functions are 

and 

<i>j{<jj) = sn 

xM = 5^j [i + Mi(«)], 

2A,     /w - (j + l)AuA     „     .T„ , 
— log    ^—-*• - A + iK\ k 
7TI V W — JAW        / 

(3.17) 

(3.18) 

Here we use the standard notation for the elliptic functions with parameter k, 0 < k < 1; 
viz., 

if and only if 

z = sn[tt, k] 

Jo  J(l-t>)U ^/(l-«»)(!-**«•)' 
(3.19) 

A'(lfe) = tt(l),        and       A" = A'(>/l - A;2). (3.20) 

We remark that the characteristic function Xjiy) given in (3.17) has the following prop- 
erties [22]: 

1. for w 6 (j Aw, (j + l)Aw) =• X» e [(fc1/2 + &"1/2)/2, AT
1
'

2
], 

2. for w 6 » - [jAw, (j + l)Aw] => Xi(w) € [0, (Ar1/2 - A:1/2)/2] . 

Theorem 3 The characteristic function Xji1^) nas the explicit representation 

m=-oo   I W — Dm W — Dm   ) 

where the poles 

and residues 

PT = (j + «m)A <M 

Tm  = — 
7TW 

WkR 

(3.21) 

(3.22) 

(3.23) 
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depend on the parameters 

1 — iqm 

<j = exp-7T—  = exp-——r /       , = • (3.25 
A ^   K{k)Jo  ^(l-<2)(l-(l-fc2)<2)J 

We remark that (p^\rm) corresponds to the anti-causal (right half plane) poles and 
residues of \j while (f%i\rm) are causal. This motivates the following result. 

Theorem 4 Given g(u>) G T (Lp) the causal projection of g{w), V+ {g}, can be obtained 
in the limit as follows, 

^ = <, Ax, , £ 9(U + \)*»yP+ ixM) (Ao,,fe)-.(o+,i-)j^oo 2 

= ,A .ftL, , £ y((i + |)A«) £ -f=^). (3-26) (Au,,fcH(o+,i-)j.=_oo 2 m=_oo w _ pV> 

Then H^M - ?+ {<?H}IIP - 0 as (Au,, fc) -> (0+, 1-). 

Now assume that the scalar function h(uj) E T {L\ fl L2) is positive real and thus has 
a spectral factorization h(uj) = f(w)f(u>) where f(u>) is the unique causal factor. We can 
extend the above causal projection computation via logarithmic transformation of the data 
as follows. 

Theorem 5 Let h(s) have the above properties, then the spectral factorization h(s) — 
f.(s)f(s) exists and is unique where f(s) and l//(s) are both analytic in C+. Then the 
approximation 

/«(«) = exp[ £  In h((j + \Au,)7>+ {X»}] (3.27) 

with 7>+ {Xj(w)} given as in (3.26) has the property ||/(a)(") - /(a/)||p -» 0 for both p = 1,2 
as(Au/,fc)->(0+,l-). 

By way of summary of the theoretical basis for the algorithm we have in mind we direct 
attention to the following formula for (approximate) causal projection: 

V+ * £ g(U + b&*) £  -^rjy <328) 

and for (approximate) causal spectral factorization: 

/M*«p[£; hxh((j + bAv) £ -^ (3.29) 
j'=—00 m= — 00 W        Pm 

where the sampling interval Ao> is small enough and k < 1 but close to 1. Substitution of 
the expressions (3.22)-(3.25) reveals the relation 

-^ (3.30) 
u> pii> ~ iy/kK[(u> - (j + \)Aw) + J + fim]' 
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so that an Mth order approximation to the projected characteristic function for sampling 
interval Au; is 

P+{#(«)} =   £   —n7)=^+(^-(j + ^)Au;) (3.31) 

so that the computation of (3.28) (or (3.29)) for uniform sampling u> = l&u), I = 0, ±1, ±2,.. ., 
reduces to the discrete convolution of the data sequences g((j+^)Au>) (resp. In h((j+ i)Au>)) 
and <p+(u> — (j + \)Au>) for j = 0,±1,±2,— This is efficiently implemented using FFT 
processing. 

The summation (3.31) converges rapidly if the characteristic function is chosen carefully; 

i.e., if k < 1 and close to 1. Well known properties of elliptic integrals suggest that we 
compute (k,K) by first choosing q < 1, then 

w here 

02 = 2f;g<n-i/2>J 
n=l 

oo 

03 
n=l 

(3.32) 

(3.33) 

For example, the choice q = j obtains fc = 0.999994 and K = 7.11943. In this case we found 
M = 8 sufficient for single precision computation on a VAX 11/750. 

Spectral Factorization of Matrix Frequency Samples. For the general MIMO design 
problem typical of flexible space structure control problems the spectral factorization steps 

are required for matrix valued transfer functions. In Phase 1 effort we have implemented and 

tested a computer algorithm which operates on the frequency sampled data by a recursive 
procedure to obtain the spectral factor. The basis for the algorithm can be obtained by 
association of the spectral factorization with the solution of a Riccati equation arising in the 
context of a quadratic optimal control problem: 

mm  H\\u(t)\\2 + \\y(t)\\2dt (3.34) 
"€«,.,! Jo 

subject to the linear, time-invariant system model 

x(t)   =   Ax{t) + Bu(t), x(0) = x0 (3.35) 

y{t)   =   Cx{t), t > 0, (3.36) 

where we assume [A, B, C] is a minimal realization for the transfer function G(s) = C[al — 
A]~lB. The optimal control is known to be a linear state feedback u(t) = — Koptx(t) = 
-BTPx(t) where P is the unique, positive definite symmetric solution to algebraic (matrix) 
Riccati equation, 

PA + ATP - PBTBP + CTC = 0. (3.37) 



SEI-89-03-15-WB 23 

Standard algebraic manipulations based on (3.34)-(3.37) provide the spectral factorization 
relation [23, pp. 68j which we write 

H{s) = 1 + GT(-s)G(s) = FT{-s)F(s) (3.38) 

where F(s) = I + Koptlsl — A]~XB is the causal spectral factor of the positive real transfer 
function, H(s). 

The algorithm we employ was first suggested by Davis and Dickinson [19] and takes the 
form of a Newton-Raphson recursion for the spectral factor; 

Fn+1(iu>) := V+ {[F;M]~X#M[^M]_1} Fn(ta,), (3.39) 

where V+ is the causal projection operator. The recursion (3.39) can be implemented in a 
form which enhances its numerical properties and provides an effective computer algorithm; 

[Fn+Ir :. [F^1 (/ + V+ {[F:)-1 H[Fn]~l - i})'1. (3.40) 

By initializing with F0 (an m x m diagonal matrix) with diagonal elements equal to the 
spectral factors of the diagonal elements of H the second term of (3.40) remains a pertur- 
bation of the identity (since [•F^]-1/f[.Fn]~

1 — / —• 0) which regularizes the computations. 
The diagonal initialization guarantees that the first residual [Zro]-1i/[Fo]~1 has ones on the 
diagonal and all off diagonal elements less than one in magnitude. The resulting numerical 
problem is well-conditioned. 

The conceptual algorithm can be summarized in the following pseudo-code. 

Algorithm for Matrix Causal Spectral Factorization 

Given: An m x m matrix valued data sequence H{u>) defined on a set of uniformly sampled 
frequency points a> G fi together with the property that at each u> the matrix H(u>) is positive 
semi-definite, symmetric. 
Initialize: 

F(°>(a,):=diag{/fc(u,),fc = l,...,m} 

where the scalar data sequences fk(v) are computed using (3.29) from the m diagonal data 
sequences of H(UJ). 

[F-1(u/)](0) := diag{l/AM, k = 1,..., m}. 

Repeat Until ( ||ij"'(ti/)|| < e) where e is a specifed tolerance. 

j := ; + 1 

[F-x(w))W := [F-l{v)]'V~l>{lm + V+ {fl^H})-1 

Stop 
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Issues in Design of Efficient, Computer Code. The primary observation that, permits 

the design of an efficient computer algorithm follows from the relation (3.31) so that, in 

effect, (3.28) or (3.29) are discrete convolution of infinite data sequences. In applications, 
the summations appearing in (3.28) or (3.29) will converge rapidly and can be appproximated 

within any desired precision by finite sums. For example, in design of control laws for flexible 
structures it is assumed that the transfer function model for the structural flexure response 
to control actuation is strictly proper with effective system bandwidth UIBW which is known 
a priori (even if the exact transfer function is not known). Modeling issues relative to the 
determination of U>BW for control of flexible structures are considered in [24]. Once the model 
bandwidth U>BW has been obtained, together with a choice of a frequency sampling interval 
Ao> then we compute the approximating sequence V+ {g(u>)} as 

N, 

V+{g{u)}=   £   <K(j + i)Au;)v>+(u,-(j + i)Au/), (3-41) 
}=-NP 

where Np Au; = U>BW- This is a convolution of two data sequences g, tp+ of length 2^. 
Since in many applications these data sequences may be relatively long, an efficient 

implementation of the required convolution may be obtained using an FFT algorithm. The 
development of reliable computer code for FFT processing has been quite extensive and 

several efficient, portable, and reliable codes are available in the public domain [25]. We 
have found the Fortran routine FFT842, available in [25], an efficient alternative which 
offers support for the required complex valued, frequency response data sequences. 

In some cases, we may wish to operate directly on data sequences obtained from mea- 
surements on physical systems. For such cases we must concern ourselves with potential 
numerical errors due to aliasing and Gibbs phenomenon [26]. For application to control 
system design we believe it is important to consider such applications in the development, 
of a comprehensive computer code and we have included various standard data windows for 
weighting the data sequences for FFT based convolution. 

One critical tradeoff in the development and testing of computer code to support the re- 

quired computations for Wiener-Hopf control system design is storage requirements for the 
complex data sequences. In Phase 1 the focus has been on the development of a prototype 

computer code for testing the numerical algorithms as well as experimenting with the choice 
of bandwidth and data sampling. Thus we have made provisions for graphical plotting of 
the various data sequences as the algorithm procedes. We have made explicit provisions for 
storing a number of data sequences which are useful primarily for debugging and testing 
the code. As a result the prototype code is a data storage intensive implementation of the 
method. One area where data storage can be efficiently used is in the implementation of 
the spectral factorization by consideration of several basic properties of the matrix data se- 
quences. Since by assumption, the model (3.35)—(3.36) involves real, vector-valued functions, 
u(t), y(t), and x(t), the transfer function matrix has the property G(iw) = G{ — iu>). By the 
construction (3.38) H(u>) is Hermittian, positive definite for each u>. 

At the jth iteration, the recursion is driven by a matrix, residual data sequence; 

Ru)(u) := F-T{-w)H{u)Fr\u) - I (3.42) 
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Matrix Sequence *(«) = X(-W) Hermittian 
G X 

H X X 

R X X 

V+{R} X 

F X 

Table 3.1: Properties of Matrix Data Sequences 

which is also Hermittian for each w. Table 3.1 summarizes the properties of the matrix data 
sequences encountered. 

The fact that the data sequences involve transforms of real-valued processes permits 
computational savings of the order of 2NP for each scalar sequence since, at the jth iteration, 
we can obtain the required sequences by only computing H&'(u), F;~

1(o') for u> > 0. Let 

ffjff (w) denote the k x I entry of the residual sequence at iteration j. Then the following 
holds; 

*>+{/#(«)    = 
(3.43) 

where we have used the facts that for any X(UJ) with x(u>) = x(— u>), V- {x(u)} = V+ {x(— UJ)}, 

and by construction of the residual matrix, 

RM(-w) = Ru(u>) = Rtk(w). 

Thus we can construct the lower triangular part of V+ {iP^(w)} directly from its upper 
triangular part. If wJ'(t»/) is TV x N then we are required to compute causal projection using 

the convolution (3.41) for only ' 2
+ ' scalar data sequences to construct the required causal 

projection. 
Finally, the computation (3.40) requires symultaneous solution of a set of N linear equa- 

tions for each u>. This can be implemented efficiently using the routines CGESL and CGECO 

available in Linpack [27]. 
We have coded and tested the spectral factorization algorithm for several problems of 

both scalar and matrix types and including both rational and irrational spectrum. In the 
next section we described the results of these studies in detail. It is informative to monitor 
the convergence of the recursion (3.40) by examining the residual at each iteration in terms 
of two norms: 

max.ele(i20)) := maxfi&V)} 

max .tr(*W):- m^{tr(R$\w)R$(u,))}. 
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START UP MENU AND STATUS 

CHOOSE A NUMBER BELOW. 

CURRENT VALUE 

1. INPUT BAND WIDTH. 100.00 

2. INPUT NUMBER OF SAMPLE POINTS. 1024 

3. PLOT P(S). 
4. START PROGRAM. 

5. RETURN TO MAIN MENU. 

Figure 3.1: An example of the start.up menu. 

3.3     Development and testing the interactive software environment 

3.3.1     Objectives of the prototype software environment 

There were four main objectives to the design of the software environment: to support 
the frequency sampling analysis, to monitor the causal spectral factorization algorithm con- 
vergence, to resolve design trade-offs, and to provide a means to obtain desired output. 
Additionally, an efficient user interface consisting of a menu format with options grouped 
according to major functions was desired. 

Frequency sampling analysis is concerned with evaluating the frequency responses of 

specific functions at discreet frequency values. The software environment was designed to 
perform uniform frequency sampling computations using a maximum of 1024 points. The 
program permits the user to select a bandwidth and a number of frequency samples for the 
computations in the start.up menu. In addition, after making these selections, the user can 
plot the plant transfer function, P(s), to evaluate these choices. The start.up menu appears 
in figure 3.1. 

Another objective of the software design was to allow the user to monitor the convergence 
of the spectral factorization algorithm. This algorithm uses an iterative approach to converge 
on the spectral factor. The results of the convergence, which are the maximum trace and 
maximum element of the residual and the number of iterations needed to converge, are 
dislpayed in a summary format, as seen in figure 3.2. The user can change the convergence 
threshold, epsilon, and the maximum number of iterations the program will perform before 
reaching epsilon, and then recompute the spectral factor if desired. 

An important aspect in the design approach of this paper is the design tradeoff between 
tracking cost and saturation cost. The software environment enables the user to generate a 

curve of saturation cost versus tracking cost as a function of the parameter k. This curve 
can be seen in figure 3.3. With this plot, the user can choose a k value that corresponds to 
some maximum saturation level and a corresponding tracking cost, and then generate the 
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RESIDUAL COMPUTATION SUMMARY 

ITERATION NO. MAX. ELEMENT MAX. TRACE 

0 0.9001E+00 0.7547E-02 

1 0.3935E+00 0.7807E+00 
2 0.1367E+00 0.2728E+00 
3 0.1271E-01 0.2540E-01 

4 0.1197E-03 0.2389E-03 
5 0.7935E-06 0.8964E-06 

EPSILON O.lOOOE-05 

MAXIMUM NUMBER OF ITERATIONS 11 
NUMBER OF ITERATIONS TO 

CONVERGE ON EPSILON 5 

CHOOSE AN INTEGER 

1. CHANGE EPSILON 

2. CHANGE MAX ITERATIONS 

3. RECOMPUTE SPECTRAL FACTOR 

4. CONTINUE PROGRAM 

Figure 3.2: Residual computation summary from MIMO case benchmark problem. 
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Figure 3.3: An example of a saturation cost vs. tracking cost plot. 

design frequency response data with this k. 
The final objective of the software was to provide a means for displaying and obtaining 

output of the frequency response data. Specific data relevant to control design were grouped 
into a plotting menu that appears in figure 3.4. These data can be plotted on the screen 
or as a hard copy in the various configurations shown in the plot type menu in figure 3.5. 
In addition, there is a feature in the main menu ,that permits the user to save the data of 

figure 2.12 in a file for later plotting. 

3.3.2    Testing and Benchmarks 

The software was tested using four benchmark problems - a pinned- pinned beam with a 

torque at one end, a rigid stick on a cart subject to a disturbance, and a flexible stick on 
a cart subject to a disturbance in both SISO and MIMO cases. These benchmarks will be 
discussed in more detail in a following section, but a brief summary of the computational 
and storage requirements for these problems will be presented here. 

The software was tested on a Micro VAX II, and the CPU time for each benchmark 
problem appears in Table 1. This time represents the actual CPU time required to perform 
all of the necessary computations required to calculate the frequency response of the optimum 
controller. As can be seen from the results, there was a substantial increase in CPU time for 
the MIMO case of the flexible stick on a cart, which is a reasonable result since this is a 2 

by 2 matrix case whereas the other benchmarks were scalar cases. 
The storage requirements for each benchmark also appear in Table 1. The frequency 

sampling approach is very data intensive, requiring storage of many arrays containing large 
numbers of elements. Most of the arrays typically contain 2048 elements in the scalar cases, 

and 8192 in the matrix case. 
Additional observations of the results of the benchmarks show that accurate results of the 
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PLOTTING MENU. 

CHOOSE A NUMBER BELOW. 

1. XL(S)       8. K(S) 

2. YL(S) 9. S(S),I-S(S) 
3. OMEGA(S) 10. L(S) 
4. LAMBDA(S) 11. C(S) 

5. H(S) 12. ES.ET COST FUNCTIONS 
6. HH(S) 13. PO(S) 
7. Z(S) 14. RETURN TO MAIN MENU 

Figure 3.4: The plotting menu. 

PLOT TYPE MENU. 

CHOOSE A NUMBER BELOW. 

1. TYPE OF DATA REPRESENTATION—LINE 

2. REAL AND IMAGINARY VS. FREQUENCY. 

3. REAL VS IMAGINARY. 

4. MAGNITUDE AND PHASE VS FREQUENCY. 

5. RETURN TO PLOTTING MENU. 

Figure 3.5: The plot type menu. 
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Benchmark CPU Time Storage Requirement 

Pinned-Pinned 
Beam 

6 min. 2.7 Meg 

Rigid Stick on 
a Cart 

5.5 min. 2.7 Meg 

Flexible Stick on 
a Cart (SISO) 

9.5 min. 2.7 Meg 

Flexible Stick on 
a Cart (MIMO) 

18 min. 5.1 Meg 

Table 3.2: Benchmark computational times and storage requirements. 

frequency response curves can be obtained using less than the maximum number of sample 
points (1024) which reduces the computational time and storage requirements substantailly. 
Figure 3.6 shows the controller frequency response using 1024 points and figure 3.7 shows 
the same controller using only 256 points. The curves are very similiar, but in both cases, 
the low frequency end of the respose is under-sampled due to uniform sampling. However, by 
reducing the bandwidth, and thereby concentrating more of the sample points in the lower 

frequency region this under-sampling condition can be reduced. 

3.3.3     Considerations for later versions 

A review of the software design showed that a substantial decrease in memory storage can 
be realized by a reduction in the number and size of temporary storage arrays. Addition- 
ally, the size of some of the permanent arrays can also be reduced by rewriting the spectral 
factorization code. Furthermore, the program can broken up into smaller segments that per- 
form intermediate computations and then store pertinent data on disk, so that the memory 
requirement at any one time can be dramatically reduced.This, however, would increase the 

software run time. 
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Figure 3.6: Controller frequency response with 1024 points. 
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Figure 3.7: Controller frequency response with 256 points. 
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& t & 

") 
x   control torque 

y - point of observation 

Figure 3.8: Pinned-Pinned Beam Control Problem. 

3.4     Benchmark Problems Considered in Phase 1 

3.4.1     Control of a pinned-pinned beam. 

In this example we consider a control system design problem for a relativly simple structure 
with well known transfer function. Consider a Bernoulli-Euler beam model with "pinned- 
pinned" boundary conditions as shown in the figure. The beam lateral deformation is given 
by y(t, z) with 0 < z < L and has dynamics described by the PDE; 

pA at2 ItsjpAEl 
d3y   + £7^-0 dldT2 + EIdT*-0' (3.44) 

with boundary conditions at z = 0, 

(no lateral displacement) 

(no restraining moment), and at z — L, 

y{t,0) = 0, 

= 0, 
Py 
dz2 

2 = 0 

y{t,L) = 0, 

Fy 
= T, 

E = L 

where the control moment is applied at the right hand end of the beam.  In dimensionless 
form the PDE can be written, 

dy d3y    ,   d4y 
8t*      24 dtdz* + <9z4      °' 

The transfer function for beam control is 

2 sin Ai sinh \2f — sin A^sinh A2 
(s'z>- (AJ + ADsinfAOsinMA,) 

(3.45) 

(3.46) 



SEI-89-03-15-WB 33 

where 

A?    =    (-( + iy/l-(*)sL2, (3.47) 

\\   =   (C + iyfl - C)sL\ (3.48) 

L is the beam length, (, is the damping factor, and 0 < z < L is the observation point on 

the beam. The resulting transfer function is meromorphic with poles occurring as 

pn = n\2L2(-C ± iy/l - (*) (3.49) 

where n = ±1, ±2,.... The transfer function represents a stable system with uniform damp- 
ing rate given by £ and P £ A•- 

Numerically stable evaluation of the beam frequency response can best be obtained by 
evaluation of the transfer function in the form 

nt      , L2       /sinhA2f      sinAjf^ 
P 3-z) = 775 TiT       .  .  lL -     .   lL    , 3.50 

(Af + A|) \ sinhA2 sin A! / ' v 

which separates the exponential terms from the cyclic terms with respect to multiplication. 
In this form wide band frequency response data can be obtained with sufficient numerical 
precision. 

The control design problem we examined is defined by a choice of the output point for 
regulation, f = 0.7, the length of the beam L = 10., and the effective damping ratio, 
( = 0.01. We note that since P is pseudo-meromorphic and stable the coprime factorization 
step is unnecessary. We take 

Nr = Nt = P,     Dr = Dt = 1. 

The resulting frequency response data for the plant model is shown in Figure 3.9. Clearly, 
the frequency response is irrational and no obvious rational approximation is evident. 

The exogenous inputs describing the control problem are given as follows: the output 
(load) disturbance is assumed constant and has PSD given by Gj(s) — =j-, the feedback 
sensor has negligible dynamics (i.e., F0 = F = 1) but is subject to noise measurements 
characterized by PSD 

-s2 

Gn'(5)     54 + 2u,2(l-2C2)32 + u/> 

The control problem considered is output regulation of the beam displacement at the specified 
location and we therefore characterize the PSD of the set point, as Gu{s) = 0. The PSD's 
for the exogenous inputs are shown in Figure 3.10. 

Control design procedes by evaluation of the tradeoff between optimal tracking cost 
subject to a constraint on the saturation of some critical input to the plant. Here we 

take Q = 1 so that saturation cost component is computed with respect the beam control 
torque. The effective optimal cost, J = Jt + kjs, tradeoff is displayed as a curve of tracking 

cost Jt vs. saturation cost J, in Figure 3.13. The cost components is estimated from 
the sampled frequency response data by numerical approximation of (2.57)-(2.58) using 
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Figure 3.9: Frequency response for pinned-pinned beam control. 
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Figure 3.10: PSD for disturbance and sensor noise inputs for beam control. 
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rectangular quadrature. The sampled data was computed using 1024 uniform sampling 
of the frequency response with bandwidth UJBW — 10. The performance of the spectral 
factorization steps is displayed in Figure 3.11. The algorithm convergence is displayed by 

examining the size of the residual. The frequency sampled spectral factors 0(s) for the 

filtering problem and A(^) for the control problem are displayed in Figure 3.12. 
To check the sensitivity of the computations to the choice of bandwidth we recomputed 

the optimal control tradeoff study using 1024 point sampling for a bandwidth of 100. The 
beam frequency response is shown in Figure 3.14. The tracking vs. saturation cost tradeoff 
for this bandwidth is displayed in Figure 3.15. 

The tradeoff in control system performance for the choice of tracking vs. saturation 
weighting can also be displayed directly in the frequency domain by displaying the magnitude 
of the sensitivity function S(s) and its complement / — S(a). Figure 3.16 displays these 
functions for several choices of the parameter k. For SISO problems, the traditional notions of 
gain and phase margin can be readily obtained from a Nyquist plot of the loop transmission, 
P(ju>)C(ju>) which is shown for the 1024 point sampling for a bandwidth of 100 in Figure 3.17. 

Once the tradeoff analysis of saturation vs. tracking is resolved the optimal controller 
is specified in terms of its frequency response. The choice of k = 0.1 acheives a saturation 
cost for this problem of Js = 7 representing the total energy in the actuating torque signal. 

The resulting controller frequency response is shown in Figure 3.18 for 1024 point sampling 
of over a bandwidth of 100. 

All frequency response plots are obtained as hardcopy from the prototype code designed 
for the Phase 1 effort. In a realistic design environment the frequency response data can be 

manipulated and displayed interactively to support tradeoff studies supporting the controller 
computational phase of design. In Phase 2 we propose to port this code to a dedicated 
workstation and to enhance the code with specific provisions for tradeoff analysis of various 
control law implementations. 

3.4.2    Vibration Isolation for a Simple Elastic Structure. 

A prototype MIMO control problem for active vibration isolation is considered with elastic 
dynamics of a flexible structure. To demonstrate the compatibility with available models 
of complex flexible structures we develop a simple finite element representation of the elas- 
tic structure response and use the resulting finite dimensional model to approximate the 
irrational frequency response. 

The model is shown in Figure 3.19.    For this simple problem we consider all motion 
constrained in the x z plane. The model consists of a flexible appendage attached via a 
one degree of freedom rotational joint to an relatively massive carriage which is supported 
mechanically from an inertial reference. The carriage support is modeled by a lumped 
stiffness and damping. The carriage is subject to a disturbance force /. Active vibration 

isolation is achieved in this simple model by a torque 1\ applied at the rotational joint 
between the flexible appendage and the carriage. Additionally, there is a torque Ti which can 

be applied at the end of the appendage. Feedback control is possible using measurements of 
appendage angle 0 and angular deformation (shear strain) <f>(L) at the end of the appendage. 
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RESIDUAL COMPUTATION SUMMARY 

ITERATION NO. MAX. ELEMENT MAX. TRACE 

0 0.6426E-02 0.6426E-02 

1 0.1228E-04 0.1228E-04 

2 0.2389E-06 0.2389E-06 

EPSILON 0.1000E-05 

MAXIMUM NUMBER OF ITERATIONS 11 

NUMBER OF ITERATIONS TO 

CONVERGE ON EPSILON 2 

Figure 3.11: Convergence of filter spectral factorization for pinned-pinned beam. 
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Figure 3.12: Spectral Factors for pinned-pinned beam control. 
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Figure 3.13: Tracking vs. Saturation Tradeoff for Beam Control. 
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Figure 3.17: Nyquist Plot of Beam Control Loop for k = .1. 
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model parameter value description 

mc 0.9 mass of the carriage 
k 1.0 support stiffness 
b 1.0 support damping 
L 15. appendage length 

P 0.0707 mass density of appendage 
A 0.0942 area cross section for appendage 
L 5.302 area moment of inertia for appendage 
E 16.0 modulus elasticity of appendage 

KG 6.4 effective shear modulus 

G 0.01206 damping constants for material dissipation 

<2 1.697 

Table 3.3: Model Parameters for Vibration Isolation Problem. 

Thus the plant transfer function P(s) is 2 x 2. 
The dynamic model is obtained by application of Hamilton's principle in terms of the gen- 

eralized coordinates {x,9, T](z),<f>(z)} where x is the horizontal displacement of the carriage, 
9 is the angular displacement of the appendage at the joint, i](z) is the lateral deformation 
of the appendage relative to the centerline given by 9, and <f>(z) is the angular deformation 
of the appendage cross section over the length of the appendage; 0 < z < L. The model 

parameters are given in the Table 3.3. Parameters are dimensionless and chosen to provide 
reasonably well scaled spectral response of typical flexible structure response. 

Under the above assumptions the system kinetic energy takes the form, 

T(x,9,T],i>) = -mcx
2 + 

l rL 

i + rj(z) - zif + fJ.(i + i(t))'}iz, 

and the system potential energy is, 

V(x,9,Tj,<t>)= -kx2 + 
2 Jo 

EL 

We also assume a dissipation function of the form, 

+-"GH 

4>\ }dz 

dz. 

(3.51) 

(3.52) 

(3.53) 

which models material losses which are expected to be dominant, in terms of dissipation for 
space applications. 

A finite dimensional model can be obtained by the Finite Element Method (FEM) by 
introducing, for example, assumed modes and expansions of the form, 

V(t,z)*$T(z)ii(t),     cf>(t,z)*$T(z)4>(t), 

where fj, <f> are N-vectors of FEM degrees of freedom. We prefer the introduction of "assumed 
modes" from FEM using collocation by splines. We note that under the above assumptions 
1st order (linear) splines are sufficient [28]. 
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Applying the above FEM approximation to the energy functions and solving the Euler- 
Lagrange equations for the reduced system Lagranian L = T — V obtains the dynamic 
equations in the form, 

Mw(t) + Bw(t) + Kw(t) = Eu(t), (3.54) 

y(t) = ClW(t) + C2w(t), 

where w = [x, 9, f], 4>]T, u = [Tb,TL,f]
T, and y = [6,(f>(L)]T. (Model data in this form are 

typically obtained from a variety of standard FEM codes such as NASTRAN.) The matrix 

parameters have the form 

M = 

Mtot 
-N„x 

N, T)X 

0 

-N9x 

Je 
-Ntr, 

AW 

-K 
0 

0 

0 
A^ 

(3.55) 

B = 

K = 

b 
0 
0 

0 

k 

0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

BT 

0 
0 

o 
0 

Btri> 

B* 

0 
0 

Kit 
Ki 

(3.56) 

(3.57) 

Here Mtot is the system total mass, and J$ is the effective rigid inertial moment for the 6 mo- 

tion. The other model parameters arise from the FEM approximation and are characterized 
by, for example, scalar expressions of the form 

N, 0x =  /    pAz dz, 
Jo 

row matrices of the form, 

N^ = IQ  PA*T(z)dz, 

and tridiagonal matrices of the form, 

N, 

K 

„    =    [LpA*(z)$T(:)d=, 
Jo 

1 =   /  *Ga—F~ dz 
JO OZ    OZ 

(cf [28] for details on the development of FEM models by collocation by splines.) The matrix 
E is (2 + 2A0 x 3 with £(1,1) = 1, £(2,3) = 1, and E{2 + 2N,2) = 1. The composite 
matrix \C\% C2] is the transpose of the first two columns of E. 
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The parameters of the model were chosen to provide a spectrum for the numerical com- 
putations of the frequency response characteristic of flexible space structures with damping 
arising primarily from material losses and to illustrate opportunities for tradeoff in the com- 

putation of stable coprime factorization. We have also structured the control problem by 

choosing collocated sensing and actuation. Figure 3.20 illustrates the position of the poles 
and transmission zeros for the 2x2 transfer function P(s) which takes inputs (TI,,TL)

T
 to 

outputs y. The effect of the disturbance loading is given by the transfer function P0(s) from 
/ to y. 

We note that the system model is unstable with one real pole in the right half plane. 
The unstable mode is associated with the unstable reaction of the flexible appendage which 
is attached to the carriage by a one degree of freedom rotational joint with no dynamic 
restraint. It will be required to obtain a stable coprime factorization for the system trans- 

fer function before proceding with the numerical frequency sampling computations of the 
controller frequency response. 

Stable coprime factorization can be directly obtained from the model (3.54), or equiva- 
lent^, by transforming the model to state space form, 

x   =    Ax + Bu, 

y = Cx, 

(3.58) 

with 

A   = 

C   = 

0 I 
-M~XK   -M~lB 

[CUC2). 

£ = 
0 

M~XE 
(3.59) 

As discussed in the previous section stable coprime factorizations can be obtained from 
the state space realization (cf. (3.2)-(3.4)). First, find real matrices H and F so that the 
eigenvalues of AH = A + HC (resp. AF = A + BF) are in the left half plane. Then the 
coprime factors can be given as, 

[Nt,Dt](s)   =   [0,Ip] + C[sI-AH]-l[B,H], 

si- AF)-lB. = 
0 

. 7". 
+ ' c' 

F 

(3.60) 

(3.61) 

The pole/zero plots for the respective factors are shown in Figure 3.21 where we have chosen 
the poles of the factors by translating the real part of the unstable and nearly unstable poles 
(including the real pole at s = 1.73 and the double pole at the origin) of P(s) to the left. 
From these figures it is clear that the transmission zeros of N( (resp. D() are the transmission 
zeros (resp. poles) of P. The poles of [N(, D{] represent the stabilizing choices of the open 
loop poles. 

The disturbance force is modeled via a narrowband PSD centered about u; = 1 given by 

Gf(s) = 
-s' 

s* + 2(1 - 2C2)*2 + 1" 



SEI-89-03-15-WB 43 

! 

a i. r 
\\W 

m -CE- I 
m7E7Z7&ZZZm777Z&7ZZZm 

Figure 3.19: Vibration Isolation Model with Flexible Structure. 
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Figure 3.20: Pole/Zero plot for Vibration Isolation Model. 
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Figure 3.21: Pole/zero Locations for the Coprime Factors. 

This might represent a periodic motion of some onboard subsystem components for a space 
craft example. Assume the displacement sensors are subject to independent, zero mean noise 
processes described by PSD's of the form 

— s 
Gn'^     54 + 2u>2(l-2<;2)32+u/4' 

Tradeoff analysis of tracking vs. saturation was performed and a value of k = .5 was cho- 

sen for the candidate design. The resulting closed loop control bandwidth can be determined 
from the frequency response of the 2x2 sensitivity function S and its complement I — S. 
In Figure 3.22 the singular values of these matrix frequency responses are shown plotted as 
dB gain vs. log frequency. From these figures one can obtain an estimate of the desired 
closed loop control bandwidth obtained by Wiener-Hopf optimization. Note the numerical 
noise evident in the singular value plots of I — S for high frequencies. This is a result of 
the single precision computations currently implemented in the software. We display the 
specification of the optimal control law in terms of the computed frequency samples of its 
scalar components via the Bode plots in Figure 3.23. 

We remark that the problem considered here is characteristic of structural vibration 
control problems in several ways. One important feature is evident by examination of the 
frequency response of the open loop plant transfer function. In Figure 3.24 we plot the 
minimum and maximum singular values of the frequency response of P. The rigid body mode 
at the origin is evident in the effective gain (i.e. maximum singular value) increasing without 
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bound for decreasing frequency. However, the ratio of maximum to minimum singular values 
is also increasing without bound for decreasing frequencies. This indicates a numerical 
singularity of the effective frequency response for 3 = 0. But this is characteristic of the 
redundant actuators and sensors for the effective rigid (i.e. low frequency) response of the 
appendage. It is interesting to note that even with such ill-conditioned transfer function 
model that the numerical algorithms for spectral factorization, causal projection, and other 
components of the Wiener-Hopf control design computations produce numerically stable 

results. We intend to direct software and algorithm development in the Phase 2 proposal 

toward the development of various options for extended precision computations and options 
for MIMO control loop shaping for transfer function models with low frequency redundancies 
(i.e. near singular numerical behavior). 

3.5     Realtime Control Law Implementation 

The frequency sampled computations obtain a specification for the frequency response of 
the ideal (optimal) controller via its sampled representation. The design engineer now has 
several options for implementing the control law. Typically for aerospace applications, high 
speed digital computers will be needed for real time control. 

A general representation of the dynamic control law is in terms of a convolution, 

u(t) = c(t) * y(t), 

of the measurements y(t) with a controller impulse response, c(t). We contend that the 
technology for implementing high speed convolution or filtering for real time control of flexible 
structures is now available and can be realized using digital signal processing methods. 

The convolution above can be approximated to any desired degree using a discrete time 

representation, 
fcsoo 

u(nT) = £ c{(n - k)T)y{nT). 
fc=o 

In general such a system can be represented as a causal recursive linear system, i.e., one 
whose present output is computed from past and present inputs and outputs. However, in 
many cases the response can be approximated by a nonrecursive system; i.e., one whose 
present output depends only on past and present inputs. Thus a nonrecursive realization (if 
one exists) would take the form of a moving average, 

m 

u(nT)=^2aky((n-k)T). 
fc=0 

Such a realization is often called a Finite Impulse Response (FIR) filter, since the effective 
impulse response will become zero after m time steps. If the ideal continuous controller has 
transfer function which is analytic in the closed right half plane and is strictly proper then its 
impulse response approachs zero as t —• oo. Such an impulse response can be approximated 
arbitrarily well by a FIR filter. 
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Figure 3.22: Singular Value plots of the Sensitivity Function for k = .5. 
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g   Min  and Max  Singular Values of P(s) 

Figure 3.24: Singular value plots of P(s). 

Frequency Sampling Filter realization. An example of an FIR filter is the frequency 
sampling filter whose frequency response is chosen to interpolate a desired frequency response 
by exactly matching a set of N frequency samples. Consider the case where the frequency 
samples are uniformly spaced. Since the filter is implemented in discrete time its transfer 
function can be described using z-transforms. The frequency response samples are therefore 
given as; 

zk = eiW, 

for k = 0,..., N — 1, (the N roots of unity) which correspond to the frequencies 

wk = kuJN, 

where w, is the time sampling rate for the discrete time realization. 
The interpolating function in the z-plane can be given as 

1 - z~N 

Fk(z> = JV(1 -eik2*/Nz-iy 

with fc = 0, •.., N — 1. This function has the interpolating property; 

FJejl2ir/N) - I °   f°r ^ n[€ ] ~ \ 1   for t 

If we take the desired frequency samples as Ck then the transfer function 

o(z) = i:ckFk{z) 
fc=0 
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will realize the frequency sampling filter.   It is easy to show that the frequency sampling 
filter has transfer function 

1        ,-N yv-i (~t 

G{z) = ~ir~ £ i - e*w*z-i
= £ctz 

where the coefficients are given as 

y £h = y 
fc=0  l       e Z *=0 

"   fc=0 

for £ = 0,...,iV-l. 
The coefficients c0,..., cjv_i are known as the Inverse Discrete Fourier Transform (IDFT) 

of the sequence Co,..., C'w-i- Thus a simple implemenation of the frequency sampling filter 
which has been used in a wide range of digital signal processing applications is described as 
follows. Sample the input time waveform y(t) with uniform sampling rate and sequencially 
load the samples in a buffer. After every k < N samples are stored in the input buffer 
the convolution is implemented by performing a DFT of the input sequence. Then perform 
IDFT of the product of this result with the frequency samples (i.e., the coefficients C'k) 
to obtain the sampled time representation of the output y(t). The output buffer is then 
sequentially clocked to the output D/A channel. This illustrates that the delay in processing 
is dependent on the computational delay for DFT processing of N length sequences. It 
is well known that the convolution operation just described is most efficiently implemented 
using the Fast Fourier Transform (FFT)—a special form of the DFT optimized for minimum 

number of multiplications [26]. 
In general, the problem of realizing closed loop controller by FIR filters is complicated 

by the available processing speeds and the duration of the ideal continuous time controller 
impulse response. The construction of stablizing controllers via stable coprime factorization 
can potentially play a significant role in practical aspects of FIR-based controller realization. 

Consider a general stabilizing feedback controller given in terms of the relation (2.41). 
The control law can be expressed in the frequency domain as 

u(s) = C(s)y(s) 

or equivalently, 

u(s)   =   [Y(s) + Dr{s)K(s)]((s) (3.62) 

X(s)t(s)   =   y(s) + Nr(s)K(sK(s), (3.63) 

where we take A', Y, N, D, K can be chosen to be "arbitrarily stable". By this we mean that, 
their respective poles can be chosen to be to the left of a vertical axis in the complex plane 
whose real part can be chosen arbitrarily far into the left half plane. The controller C(s) 
may not be arbitrarily stable however since X~l may have have poles to the right of the 
arbitrarily chosen verticle line. Indeed, in some cases C may not be stable at all in which 

case implementation of the control law by direct FIR processing is not feasible. However, it 
is easy to show that realization can be obtained by feedback. 
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Figure 3.25: Option for Stable FIR controller implementation 

To see how this can be we obtain X in the form, 

X = U- X 

where U has an "stable" inverse (i.e. has all poles to the left of the arbitrary verticle line) 
and A' has only "unstable" poles. Note that for most flexible structure models A" will be 
rational. Then we can write the control law in the form, 

i 
0        [Y + DTK] 

U-1   [U-lNrK-I\ 

which can be implemented as a stable filter with external feedbacks as shown in Figure 3.25. 
Note that each component of this feedback realization of the control law is arbitrarily stable. 

We have shown that the controller can be realized by a feedback connection of compo- 
nents each of which has impulse response which can be tailored for specific implementation 

requirements of the components available to the designer. In particular, each component 
is stable and can be realized by an FIR filter. In Phase 2 we will focus on implemenation 
considerations for FIR type processing and the options for feedback realizations of this type 
seems to offer increased flexibility for such designs. 

4     Conclusions and Directions 

Results from the Phase 1 study have demonstrated that the computational problem of fre- 
quency domain design can be solved using frequency sampling. As such the computations 
can be readily extended to certain classes of irrational transfer functions; such as typically 
arise in control of flexible structures. Advantages of the approach include: 

1. The computation of control by frequency response sampling can embrace design prob- 
lems consisting of both irrational and rational transfer function models using the same 
algorithms. 

2. The required frequency response data for model building can be obtained from ana- 
lytical models of the elastic dynamics, finite element models of structural responses, 
and/or empirical data obtained from measurements on full or partial scale models. 

3. The flexibility of control law implementation is left to the design engineer. 
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We believe that a natural approach for flexible structure control law implementation is to 
realize the required processing (i.e., real time convolution) by discrete time methods and to 
implement using advanced high speed VLSI technology. For real time control applications 
the processing delay incurred in FIR implementation is a critical factor which may effect, 
the system stability margins. The major goal of the phase 2 effort will be to demonstrate 
that, high speed implementations can reduce the processing delay to acceptable levels for 
application to control of flexible structures. 

Another important issue in realtime implementation arises when the ideal controller 
C(s) is open loop unstable (i.e., has poles in the closed right half plane). In such cases the 
impulse response can not be directly approximated by an FIR filter. However, we have shown 

that the impulse response can be realized by a feedback interconnection of FIR filters [18]. 
Moreover, the flexibility inherent in the algebraic description of all stabilizing controllers for 
a given plant transfer function suggests several new options for controller realization by FIR 
processing which we will propose to investigate further in Phase 2. 
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